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1. Introduction

The quest for finding optimum solutions to engineering problems has existed for a
long time. In modern times, the development of optimization as a branch of applied
mathematics is regarded to have originated in the works of Newton, Bernoulli and Euler.
Venkayya has presented a historical perspective on optimization in [1]. The term
'optimization' is defined by Ashley [2] as a procedure "...which attempts to choose the
variables in a design process so as formally to achieve the best value of some
performance index while not violating any of the associated conditions or constraints".
Ashley presented an extensive review of practical applications of optimization in the
aeronautical field till about 1980 [2]. It was noted that there existed an enormous amount
of published literature in the field of optimization, but its practical applications in
industry were very limited. Over the past 15 years, though, optimization has been widely

applied to address practical problems in aerospace design [3-5].

The design of high performance aerospace systems is a complex task. It involves the
integration of several disciplines such as acrodynamics, structural analysis, dynamics, and
aeroelasticity. The problem involves multiple objectives and constraints pertaining to the
design criteria associated with each of these disciplines. Many important trade-offs exist
between the parameters involved which are used to define the different disciplines.
Therefore, the development of multidisciplinary design optimization (MDO) techniques,
in which different disciplines and design parameters are coupled into a closed loop

numerical procedure, seems appropriate to address such a complex problem. The
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importance of MDO in successful design of aerospace systems has been long recognized.
Recent developments in this field have been surveyed by Sobieszczanski-Sobieski and

Haftka [6].

1.1 Multidisciplinary Design Optimization of Smart Composite Wings

The use of multidisciplinary optimization techniques in aircraft design has been
increasing over the past decades. A recent survey of MDO applications in preliminary
aircraft design has been presented by Kroo [7] . The analysis methods used in MDO
range from simple analytical or empirical expressions to complex finite element models
[8-11]. The validity of the designs obtained using MDO procedures depends strongly
upon the accuracy of the analytical methods used. Therefore, it is essential to integrate

accurate and efficient analysis techniques to obtain meaningful optimum designs.

Due to the high stiffness-to-weight ratio and directional stiffness and strength
properties offered by advanced composites, they are increasingly being used in aircraft
wing design. The deformation of the wing under load is directly related to the stacking
sequence of the orthotropic composite laminae. Hence, for aircraft wings made out of
composite materials, aeroelastic tailoring presents an opportunity to enhance structural,
aerodynamic and control performance by utilizing their unique stiffness and strength
properties. A comprehensive review of the aeroclastic tailoring technology was
presented by Shirk ef al. [12]. It was noted that aeroelastic tailoring has matured as a
result of developments in composite material analysis and optimization techniques. Since
aircraft wing design is a multidisciplinary problem involving the coupling of various

disciplines such as aerodynamics, composite structural analysis, dynamics and
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aeroelasticity, the use of MDO techniques seems appropriate. Key elements associated
with the use of MDO in wing design are the development of sophisticated optimization

techniques and accurate analysis methods.

1.1.1 Optimization Techniques

The design of composite wings to achieve high flutter and divergence speeds while
maintaining a low structural weight and stresses within allowable limits, is a truly
multidisciplinary problem. A number of optimization procedures have been developed
for minimum weight design of wing structures with aeroelastic and other constraints.
Most notable among these is the Automated Structural Optimization System (ASTROS)
[13]. The procedure uses the finite element method for structural analysis and gradient

based techniques for optimization.

In general, an optimization problem can be associated with several objective
functions, constraints and design variables. However, in many existing procedures the
problem is formulated with a single objective function subject to several constraints [13].
Such procedures do not allow simultaneous minimization or maximization of more than
one objective. A commonly used technique for addressing multiobjective problems is to
combine individual objective functions in a linear fashion using weight factors [14].
Such methods are judgmental in nature as the answer depends upon weight factors which
are often hard to justify. Also, the procedures do not satisfy the Kuhn-Tucker conditions
of optimality [14]. To address this issue in a mathematically rigorous way, several
formal multiobjective techniques have been developed by Chattopadhyay and McCarthy

[15]. In the first method, called the modified global criterion approach, the individual
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objective functions are combined into a single composite function using the optimized
values for each objective function. The optimized values are obtained through single
objective minimization or maximization prior to multiobjective formulation. The
drawback of the method is that several single objective optimizations have to be
performed to obtain the optimized values. Therefore, this method is not very efficient
computationally. Another method, called 'Min ' (Minimum sum beta) [15], uses
pseudo-design variables that represent deviations of the individual objective functions
from respective target values. The objective function is then defined as a linear
combination of these pseudo-design variables. An appealing feature of this approach is
the fact that the objective function is a purely linear function. However, the prescription

of the target values is rather arbitrary and hence prone to error.

The multiobjective optimization formulation used in the present work is based on the
Kreisselmeier-Steinhauser (K-S) function technique [16]. The K-S function approach can
be applied to problems with multiple objectives and inequality constraints [17]. In this
approach, each of the original objective functions is transformed into reduced objective
functions using the value of the original objective functions calculated at the beginning of
the cycle. The reduced objective functions are analogous to constraints. A new
constraint vector is defined combining the original constraints and the reduced objective
functions. Using the K-S function, a new objective function is now obtained which
represents the original objective functions and constraints. Thus the K-S function
technique efficiently integrates the objective functions and constraints into a single
envelop function. The design variable vector in this formulation remains unchanged.
The resulting unconstrained problem can be solved using any of the standard techniques

for nonlinear optimization [14]. The search direction vector is obtained using the
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Broyden-Fletcher-Goldberg-Shanno (BFGS) algorithm. ~ With the search direction
determined, a one-dimensional search for the minimum of the K-S function is performed
using the three point quadratic approximation for step length [14]. The gradients for

objective functions and constraints are evaluated using the finite difference method.

Since during an optimization process, several computations of the objective functions
and constraints are necessary, it is computationally expensive to use exact analysis all the
time. Therefore, approximation techniques are commonly used to reduce the analysis
effort. Several different approximation techniques have been used in the literature, the
most notable being the linear Taylor series and the reciprocal Taylor series
approximations [14]. In this research, the two-point approximation technique [18], which
has been found to be well suited for nonlinear optimization problems, is used. This
technique uses the gradient information from the previous and current design cycles to
construct the approximate function value. In the limiting cases the expansion reduces to

the first order Taylor series or the reciprocal approximation form.

In composite wings, the ply stacking sequence has a very strong influence on the
design objectives and constraints. Often, ply angles are treated as continuous design
variables, such as in ASTROS [13], and the resulting solution is replaced by the nearest
integral value which can lead to suboptimal design. In practice, ply orientations (and ply
thickness) are selected from a range of practical discrete values. Hence ply angles are
best treated as discrete design variables. However, parameters such as wing span, chord
and other dimensions represent continuous variables. Therefore, the composite wing
optimization problem involves both continuous and discrete design variables. Recently, a
hybrid optimization technique has been developed by Seeley and Chattopadhyay to

simultaneously include continuous and discrete design variables in the optimization
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problem [19]. Since the hybrid optimization uses a combinatorial search technique [14]
for discrete design variables, the procedure can be expensive computationally. Therefore,
this approach has been used for only some of the optimization problems addressed in the

present research.

1.1.2 Composite Structural Analysis

The structural analysis of aircraft wings can be performed either through a detailed
investigation of the wing sections comprising skins, spars, ribs etc. or through the use of
reduced structural models. The detailed analysis based on a full three-dimensional finite
element solution [13] is computationally very expensive and requires a large modeling
time. Hence, such techniques can be impractical in design optimization or trade-off
studies during the conceptual design phase. Therefore, procedures based on reduced
structural models, such as 'box beam' and 'equivalent plate', are frequently used during

conceptual wing design.

Among the aeroelastic analysis and optimization procedures based on reduced
structural model, TSO [20] and ELAPS [21-22] have been widely used. These
procedures use an equivalent plate model for structural analysis. The wing box geometry
in TSO is limited to trapezoidal planforms, whereas ELAPS can analyze cranked wings
through multiple trapezoidal segments. The depth of the structural box, which consists of
cover skins and rib, stiffener and spar caps, can be varied over the planform using this
procedure. Another procedure, named LS-CLASS [23], uses a structural model similar to
ELAPS and includes analytical sensitivity derivatives for efficient aeroservoelastic
optimization. However, all of these techniques are based on the Classical Laminate

Theory (CLT) [24] which assumes that normals to the midplane before deformation
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remain straight and normal to the plane after deformation. Thus CLT assumes
deformation due entirely to bending and inplane stretching and neglects transverse shear
stresses.  Experimental results indicate that CLT underpredicts deflections and
overpredicts natural frequencies [24]. Extensive studies comparing the results from CLT
based equivalent plate models to detailed finite element models have shown serious
limitations of the former approach [25-26]. The largest errors are reported in the torsional
behavior. The representation of the transverse shear is identified as the principal reason
for the differences. An equivalent plate model based on the First-order Shear
Deformation Theory (FSDT) [24] yields a better correlation with finite element solution
[25-26]. Thus, the inclusion of transverse shear in equivalent plate models is very
important. The FSDT assumes constant transverse shear strain through the laminate
thickness. This theory requires shear correction factors which are difficult to obtain
because they depend on the lamina properties and the lamination scheme. Therefore, a

more accurate description of the transverse shear stresses is necessary.

The Higher-Order Shear Deformation Theory (HSDT) is capable of accurately and
efficiently predicting the transverse shear stresses in composites [24]. This theory was
used to develop a composite box beam model by McCarthy and Chattopadhyay [27-29].
In this model, each wall of the box beam is analyzed as a composite plate using a refined
higher-order displacement field [30]. Continuity between the displacement fields is
enforced at the four corners throughout the thickness of each plate. The model accurately
captures the transverse shear stresses through the thickness of each wall while satisfying
stress free boundary conditions on the inner and outer surfaces. The formulation
approximates three-dimensional elasticity solution so that the beam cross-sectional

properties are not reduced to one-dimensional parameters. Both inplane and out-of-plane
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warping are automatically included in the formulation. The finite element method is used
to solve the governing equations of motion. The model has been validated extensively
for thin- and thick-walled composite laminates through comparisons with experimental
results, other appropriate theories and three-dimensional finite element analysis using
brick elements [27-29]. This method is used in the present work for accurate and

efficient composite structural analysis of aircraft wings.

1.1.3 Aeroelastic Analysis

Aeroelastic analysis plays a vital role in the design of a high performance aircraft.
History of the U.S. Supersonic Transport program shows that the entire aircraft design
process was driven by the aeroelastic design cycle [31]. To effectively integrate
aeroelastic analysis with the design of composite wings, computationally efficient yet
analytically rigorous methods are necessary. The key issues associated with the
aeroelastic stability analysis include structural dynamic calculations for natural frequency
and mode shapes, unsteady aerodynamic computations to obtain generalized aerodynamic

forces and flutter calculation methodology. These issues are briefly discussed next.

The objective of the aeroelastic analysis is to identify the flight condition (velocity
and atmospheric density or altitude) at which the aeroelastic system is neutrally stable.
At this condition, the system is purely oscillatory and the aerodynamic loads calculated
for simple harmonic motion are adequate. The technique for the prediction of three-
dimensional unsteady aerodynamic forces for purely oscillatory motion is well
developed. In the present research, the generalized aerodynamic forces are computed
using the constant-pressure lifting surface method [32] at a given Mach number for

specified values of reduced frequency £, assuming simple harmonic motion. This method
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is based on linearized aerodynamic potential theory. The lifting surface is divided into
small trapezoidal panels, with unknown constant pressure, arranged in strips parallel to
the free stream. The downwash boundary condition calculated from and deflection of
structural modes is satisfied at mid-span three-quarter chord point of each panel, leading

to the determination of the unknown pressures and the aerodynamic forces.

Assuming that the aeroelastic system performs a simple harmonic motion and the use
of purely oscillatory air loads, leads to the classical V-g method of flutter prediction [33]
which has been extensively used. However, the method is iterative in nature which
reduces the efficiency and the results are accurate only at the flutter boundary. To gain an
insight into the physical phenomena leading to flutter, it is necessary to obtain valid
damping and frequency history. The Laplace domain method of flutter analysis [34]
produces root-loci of the system which affords such an insight. The principal difficulty in
implementing the Laplace domain method lies in obtaining the air loads for arbitrary
motions, since aerodynamic calculations are well developed only for simple harmonic
motions. This problem is overcome through the use of rational function approximations
(RFA's). The generalized aerodynamic forces contain transcendental terms when
expressed as a function in the Laplace domain. To obtain a finite number of terms, the
aerodynamic forces are approximated by a rational function of the nondimensionalized
Laplace variable p. Several formulations of the RFA's are available in the literature [34-
37). The capabilities of these formulations have been extended and their performances
compared in [38]. In the current work, the 'least-squares' approach of [35-36], which has

been used by many researchers, has been adopted.

1.1.4 Aerodynamic Analysis
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To obtain aerodynamic efficiency (lift-to-drag ratio), it is necessary to compute lift
and drag for the wing. Wing drag at high subsonic or transonic Mach numbers comprises
induced drag, skin-friction drag and compressibility (wave) drag. The panel method
based on the constant-pressure lifting surface [32] is also capable of predicting steady
normal forces. The components of the normal force along the freestream and the
direction perpendicular to it yield induced drag and lift, respectively. The skin-friction
drag arises from the viscous effects in the mostly turbulent boundary layer adjacent to the
wing surface. The turbulent boundary layer problem is a very difficult one to solve
theoretically. Instead, empirical formulae developed by von Kédrmén or Schlichting [39]
are often employed to compute turbulent skin-friction drag. In the current study, the skin-
friction drag is calculated using the Schlichting empirical formula, corrected to include

the Mach number effect [40].

The compressibility drag refers to the pressure drag resulting from increase in Mach
number above low subsonic value. At high subsonic or transonic Mach numbers, shocks
develop on the top of the wing due to increased airflow velocity, which leads to 'drag
rise'. The drag rise can be analytically predicted only through the use of sophisticated
nonlinear computational aerodynamic analysis, since the linear analysis in this Mach
number regime produces completely incorrect results [40]. Therefore, an empirical
method described in [41] has been used in the current work to obtain the compressibility
drag. This method, called the 'crest-critical Mach number method', has been used in other
optimization studies [9, 42]. In this approach, the free stream Mach number which gives
sonic flow at the highest point on the airfoil (tangent to the free stream) is first
determined. This Mach number, called the crest-critical Mach number, is a function of

airfoil thickness-to-chord ratio, lift coefficient and wing sweep. The compressibility drag
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is then obtained using empirical relationship between the ratio of freestream Mach

number to the crest-critical Mach number and drag rise.

1.1.5 Smart Composite Wing Design

Smart materials respond to an external stimulus, such as electric field, by changing
their shape. When attached to a host structure, they cause deformation of the structure.
The feasibility of using smart structures is increasing because of the availability of smart
materials commercially, ease of integration with laminated structures, potential of large
performance enhancement and advances in related fields [43]. Piezoelectric materials are
popular for aeroelastic/aerodynamic and vibration control [44]. When a piezoelectric
material is stressed mechanically by a force, it generates an electric charge. Conversely,
when an electric field is applied, the material elongates or shortens depending on the
polarity of the applied electric field. A piezoelectric element is therefore capable of being
used both as actuators and sensors. Currently, most piezoelectric devices utilize lead
zirconate titanate (PZT), which is a piezoceramic material. The desirable properties of
PZT include a high level of piezoelectric activity, a wide frequency range and first-order

linearity between applied voltage and induced strain [43].

Composite wings with either embedded or surface bonded PZT actuators / sensors
have been investigated by researchers. Heeg [45] demonstrated analytically and
experimentally that piezoelectric materials can increase the flutter speed of a simple two
degree of freedom wing model. Song er al. [46] showed that incorporation of
piezoelectric layers in a wing can improve both divergence instability and aeroelastic lift
distribution. Paige et al. [47] used piezoelectric actuation to control panel flutter. The

structural modeling issues associated with piezoelectric actuation of composite plates
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have also been considered. The displacement field based on the classical laminate theory
is used by Chopra [43] and Crawley and Lazarus [48]. Chattopadhyay and Seeley [49]
and Seeley [50] have used the higher-order theory (HSDT) for modeling composite plates
with piezoelectric actuators/ sensors. The present research uses the above higher-order
plate theory to model composite box beams with surface bonded piezoelectric actuators.
The formulation of the box beam (with taper and sweep) is similar to that of McCarthy
[27] and McCarthy and Chattopadhyay [28, 29]. The governing equations of motion are

solved using the finite element method to be able to address realistic wing geometries.

The placement and the number of actuators necessary for improved aeroelastic control
require the use of formal optimization techniques. Several investigations have been
reported which address the issue of actuator placement using both deterministic [51-52]
and heuristic [53-55] approaches. For aeroelastic control, actuators placed at wing root
have been shown to be most effective [52, 55]. Power consumption is also an important
issue related to the piezoelectric actuation of structures, especially for active control with

multiple actuators/sensors [56].

In the present research, a new procedure for the multidisciplinary design optimization
of smart composite wings has been developed, incorporating optimization and analysis
methods discussed above. The principal load carrying member of the wing is modeled as
a composite box beam with surface bonded piezoelectric actuators. The optimization
problem is formulated with the coupling of structural, aerodynamic, aeroelastic and
control (passive) design criteria. The higher-order theory has been used for the wing
structural analysis and its impact on aeroelastic results have been demonstrated through

comparisons with those obtained using CLT. The effect of composite ply orientations on
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flutter and divergence speeds has been studied The developed MDO procedures are

demonstrated through applications to wing design.
1.2 Multidisciplinary Design Optimization of Turbomachinery Blades

High performance aircraft engine components operate under severe aerodynamic,
thermal and structural environments. The design of the blade profile is one of the major
aspects in engine design [57]. Engine performance is strongly affected by the
aerodynamic efficiency of the blades, which can be enhanced through efficient design of
the blade external shape. Sharp fluctuations in the blade (suction and pressure) surface
Mach number can lead to flow separation resulting in loss of aerodynamic efficiency.
Airflow velocity also impacts blade cooling and temperature distributions. The
maximum and average temperatures of the blade are desired to be minimum, as the
structural integrity and engine life are affected by these temperatures. From the structural
point of view, it is important to maintain blade stresses and vibration levels within the
allowable limits. Therefore, efficient blade design is a multidisciplinary problem that
requires the integration of several disciplines such as aerodynamics, heat transfer and

structures.

The direct design method, in which the designer changes the blade geometry
iteratively until desired performance is achieved, affords direct control of the blade design
parameters. However, this method is very laborious and requires considerable insight
[58]. In the inverse design method [59], the performance is specified in terms of velocity
or pressure distributions to obtain the desired blade shape. This requires a knowledge of
the desired velocity or pressure distribution. Also, the imposition of constraints is not

easily applicable in inverse design.
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Design optimization techniques have been used by many researchers to optimize
airfoil shape for aircraft wings [60-61]. However, the application of optimization
procedures to turbomachinery blade design has been rather limited. Chattopadhyay ef al.
[62] developed an optimization procedure for efficient design of turbine blades which
successfully eliminated the leading edge velocity spikes while maintaining the tangential
force coefficient. Aerodynamic analysis was performed using a two-dimensional panel
code. The pressure and suction surfaces were approximated by polynomials, whereas
circular and elliptic arcs were used to describe the leading edges. The procedure was
further extended by Narayan e al. [63] to include heat transfer criteria where coolant hole
shapes and sizes were included as additional design variables. This multidisciplinary
optimization procedure resulted in significant reduction in blade temperatures and smooth
velocity distributions. For aerodynamic optimization, Goel et al. [64] used a combination
of numerical optimization, hill climbing and genetic algorithm in an attempt to overcome
the problem of local minima, since the turbine design problem is mutimodal. Turbine
blade geometry was revpresented by Bezier-Bernstein polynomial [65].  Blade
performance was measured by the distribution of the surface Mach number obtained

through inviscid flow calculations.

The current work presents the development and application of a new multidisciplinary
optimization procedure incorporating more comprehensive analysis methods for the
design of turbine blades. The procedure integrates acrodynamic and heat transfer design
considerations, with mechanical constraints on blade geometry. Bezier-Bernstein
polynomial is used to accurately represent airfoil shape with a relatively small number of
design variables. The aerodynamic analysis is based on the thin shear layer

approximation of the Navier-Stokes equations [66-67]. Grid generation is accomplished
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by solving Poisson equations with arbitrarily specified inner and outer boundary points
[68-69]. A finite element formulation is used to calculate blade interior temperatures.
Total pressure and exit kinetic energy losses are minimized through a constrained
multiobjective optimization formulation using the Kreisselmeier-Steinhauser (K-S)
function approach discussed earlier. The maximum and average blade temperatures and

certain geometric parameters of the blade are treated as constraints.



2. Objectives

The primary objective of the present research is to develop a multidisciplinary
optimization procedure for the conceptual design of composite aircraft wings with surface
bonded piezoelectric actuators. The optimization problem addressed involves the
coupling of structural mechanics (including smart material), aeroelasticity and
aerodynamics. The validity of the designs obtained using MDO procedures depends
strongly upon the accuracy of the analytical methods used. Therefore, it is essential to
integrate accurate and efficient analysis techniques to obtain meaningful optimum designs
within a reasonable time. Since this multidisciplinary problem has multiple nonlinear
objective functions and constraints, sophisticated optimization algorithm is required for

solution.

In the present research, the load carrying member of the wing is idealized and
represented as a composite box beam. Each wall of the box beam is analyzed as a plate
using a refined higher-order displacement field. This structural modeling accurately
captures the transverse shear stresses through the thickness of each wall while satisfying
stress free boundary conditions on the inner and outer surfaces of the beam. The present
research extends the composite box beam model to include piezoelectric actuators bonded
to top and bottom surfaces. Detailed structural modeling issues associated with
piezoelectric actuation of composite structures are considered. The governing equations
of motion are solved using the finite element method to analyze practical wing

geometries.

For the aeroelastic stability analysis, both the classical V-g method and the Laplace
domain method are utilized. The V-g method gives accurate results at the flutter

boundary, but requires iterative solution. The Laplace domain method involves
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approximating generalized aerodynamic forces, but it produces root-loci of the system
which give an insight into the physical phenomena leading to flutter/divergence. This
method can be efficiently integrated within an optimization procedure. The steady and
unsteady aerodynamic forces are obtained using linearized aerodynamic potential theory

for compressible flows.

The Kreisselmeier-Steinhauser (K-S) function technique is used to efficiently
integrate the objective functions and constraints into a single envelop function for
multiobjective optimization with continuous design variables. The resulting
unconstrained problem is solved using the Broyden-Fletcher-Goldberg-Shanno algorithm
for nonlinear optimization. The hybrid optimization method, though computationally

expensive, includes continuous and discrete design variables simultaneously.

The secondary objective of this work is to develop a multidisciplinary optimization
procedure for the design of turbomachinery blades. Aerodynamic and heat transfer
design objectives are integrated along with various mechanical constraints on the blade
geometry. The blade geometry is represented by Bezier-Bernstein polynomials, which
results in a relatively small number of design variables for the optimization. Thin shear
layer approximation of the Navier-Stokes equation is used for the viscous blade-to-blade
flow calculations. Grid generation is accomplished by solving Poisson equations. The
maximum and average blade temperatures are obtained through a finite element analysis.
Total pressure and exit kinetic energy losses are minimized, with constraints on blade

temperatures and geometry.

The specific goals of the current research are as follows:
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Establish the significance of the refined higher-order displacement field on the
aeroelastic stability of composite wings. Study the effect of composite ply

orientations on flutter and divergence speeds.

Extend the higher-order theory based composite box beam model to include
piezoelectric actuators bonded to top and bottom surfaces, considering detailed
structural modeling issues associated with piezoelectric actuation of composite

structures.

Develop a multidisciplinary optimization procedure for the conceptual design of
composite aircraft wings incorporating accurate and efficient analysis methods
and multiobjective optimization technique. The optimization problem is
formulated with the objective of simultaneously minimizing wing weight and
maximizing its aecrodynamic efficiency. Design variables include composite ply
orientations, ply thicknesses, wing sweep and piezoelectric actuator thickness.
Constraints are placed on the flutter/divergence dynamic pressure, wing root

stresses and the maximum electric field applied to the actuators.

Develop of an accurate and computationally efficient optimization procedure for

integrated aerodynamic and heat transfer design of turbomachinery blades.



3. MDO Methodology for Smart Composite Wings

The multidisciplinary design optimization of smart composite wings involves the
coupling of structural mechanics (including smart material), aeroelasticity and
aerodynamics. For the developed MDO procedure to be applicable to practical problems,
the analysis and the optimization techniques must be computationally efficient and

sufficiently rigorous. These methods are described in the following sections.
3.1 Analysis

3.1.1 Structural Modeling

The load carrying member of the wing is represented as a single-celled rectangular
box beam with taper and sweep (Figures 1 and 2). Piezoelectric actuators are bonded to

top and bottom surfaces of the box beam.

>X

PZT actuator

Roofj-
chor

Composite box bear

Semi-spaﬁ————|

Figure 1. Wing planform
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Figure 2. Wing cross section

The box beam is modeled using composite laminates to represent the four walls

(Figure 3). The global coordinate system for the box beam is denoted (X, Y, Z) and the

local coordinate system for the i-th wall is denoted (xi, yi, zi). The subscript '1' is omitted

for convenience in the rest of the dissertation. For each of the individual walls of the box
beam, the inplane displacements are represented as cubic functions of the thickness
coordinate and the transverse displacement is assumed constant through the laminate
thickness. The higher-order displacement field [30] described in the local coordinate

system (Figure 3) is as follows.

U(X.Y,2) = Ug(X,Y) + 20, (%, Y) + 28 (X, Y) + 22 (X,Y)
V(X.Y.2) = V(X Y) + 20y (%,5) + 278, (5,Y) + 2°Gy (%, ¥)
W(X,y) = Wo (X, y) (1)

where ug, v and w, denote the displacements of a point (x, y) on the midplane and v ,
and y represent the rotations of normals to the midplane about the y and x axes,

respectively. The higher-order terms &, , &, £, and {, represent beam warping in each

plane.
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Figure 3. Smart box beam construction

The displacement field must satisfy the conditions that the transverse shear stresses,

o, and ©,,, vanish on the plate top and bottom surfaces.

yz>

h
ze(anaiE) =0
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h
Gyz(x,y,ia) =0 )

where h is the plate thickness. For orthotropic composite plates, these conditions imply

that the corresponding strains be zero on the surfaces. This yields the following relations.

£, =0

g, =0

b= Gy

& =3 5+ vy) G)

The refined higher-order displacement field is now written as follows.

23 aWO
u=1uy + Yy — 3hz ox Wx)
ow
V=vyt+zy, - h2 (—Q-ay Yy) (4)

W:WO

The functions ug, vq, Wg, Wy and y represent unknown functions of x and y. It is
important to note that the displacement field for the refined higher-order theory (Equation
(4)) has the same number of dependent variables as those used in the first-order shear
deformation theory (FSDT), although inplane displacements are cubic functions of the

thickness coordinate. By making substitutions,

6w
=0y — 5X
ow

y =y - )
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the following modified form of the displacement field is obtained.

- .
u =u0—z%+z l—f(—z—j b

3\h
owy, | 4(z)
vV =y, zay+z~ 3h_¢y (6)

where ¢, and ¢, represent the additional rotations due to shear deformation about the y

and x axes, respectively. It should be noted that the displacement field for the classical

laminate theory can be obtained by setting ¢, and ¢, , equal to zero in equation (6).

Since there are only six unique values of the stresses and the strains due to symmetry,

the following notation is used to define these quantities.

(')'| G xx
Gy Cyy
G3 G
= ™
G4 Cyz
Os Gz
C6 Oxy
81 8){X
€, Eyy
€3 €2z
=1, (®)
€4 Eyz
85 2€xz
P 28xy

where X, y and z correspond to 1, 2 and 3 directions, respectively. Assuming small

displacements and rotations, a linear strain-displacement relationship is used.



ou ov ow
g =", Ey=—", E3=—T=
ox oy 0z
oV ow Ju ow
84—_+_, 85-_—'—+—, 86-:
0z Oy 0z 0Ox
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)

In the above equation, ¢, and g, are inplane normal strains, €5 is transverse normal

strain, €4 and €5 are transverse shear strains and g¢ is inplane shear strain. Using the

above strain-displacement relationships (Equation (9)) and the refined higher-order

displacement field (Equation (4)), the strains can be expressed in terms of midplane

displacements and curvatures as follows.

g, =€) +2zk) +2°k}
£, = €5 +7K3 +ZK5
£g = €0+ 7Ky +Z K¢
g4 = €9 +2%3

€5 = 8(5) + Z2K§

where

_6)—(_ ox -
0 avo 0 a‘lfy 2 4
g€y =", Kp=—""—, Ky=~—

dy oy

& | ox dy | ox

ow 4 [ ow
0 _ 0 2 _ 0
84——+\Uy, K4 ———E'j' E

ow 4 (aw
0 0 2 0
€5 = — +VY,, K5=-—
ST Y T R ax

(10)

QY
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The generalized Hooke's law is used to relate the stresses and the strains. For
laminates made of orthotropic materials (with elastic symmetry parallel to the 1-2 plane)

the constitutive relation [70] is written as

o) Q) Qi O €
c(=|Qpz Qpn 0 €
06 _O 0 066 86

o4 [Qus 0}{84}
= 12
{0 5} 10 Qss]les (12)

where Qij , the plane-stress reduced elastic constants in the material axes of the laminate,

are related to the material engineering constants by the following equations.

V12E2 Ez
— ==, Qp=T"—
1-wvpvy (13)

=——— Qn

1=viovy
Q44 =G5, Qs5=Gy3, Qg6 =Gy

In the above equations, there are only five independent elastic constants. For laminates
consisting of multiple plies at different orientations, it is convenient to use the
transformed elastic coefficients [70] in the laminate coordinate system (X, y, z). After
transformation to the laminate coordinate system, the constitutive relations can be written
as

o —(—211 Q, Qi €
Gaf = 612 622 626 €

Ge _6]6 626 666 €6
{64}: Qus 645} H
Os) Qs Qss5)1i®s (14)

where Gij are the transformed elastic constants.
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Figure 4. Composite laminate with surface bonded piezoelectric actuator

The constitutive relation for any ply of piezoelectric material is written as follows

[48].
S =6ij(§j—’\j) (i,j=1,2,6) (15)

where A is the induced strain due to piezoelectric actuation. Equation (15) is applicable

if the piezoelectric material thickness is small compared to the plate thickness (Figure 4).
The actuation strain vector A; contains inplane normal and shear strain components, and
can be treated similar to thermal strain in the elasticity formulation. The induced strain is
used to control extension, bending or twisting of a laminate. Generally, an electric field
is applied through the thickness of the PZT used as an actuator. Also, the PZT materials
are isotropic and, therefore, its orientation has no effect on the material properties.
Denoting the thickness direction as '3', the induced strain for PZT material is obtained
from the following relation.
A ds

Ay =1d3 (E; (16)
Ay o
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In equation (16), E; is the applied electric field and dj; is the mechanical-electrical
coupling coefficient of the material. The applied electric field is obtained by dividing the
applied voltage by the thickness of the PZT layer. The maximum applied electric field

must be smaller than the coercive field to avoid depoling the material.

In the 'equivalent single layer' approach of composite analysis [70], the laminate
stress resultants are obtained by integrating the stresses through the thickness as follows.

The stresses also include effects due to piezoelectric actuation.

h/2
N., M., P)= Jo.(l,zz Yz (i=126)
( 1 1 l) _h/zl( )1
h/2
(Qz, R2)= I64(1, Zz)jZ
—-h/2
h/2

. R))= Jos(, Z°
@ Ry) _hfgs( Z)jz 17

The first three terms (N;, M; and P;) are the inplane terms, which can be decomposed as

follows.
N; =N -N}
A P .
Mi=Mj-M; (=126 (18)
P, = P - Pf

The first terms on the right hand side equation (18) (superscript 'A") represent the stress
resultants due to actual strain field, whereas the second terms (superscript 'P') represent

the resultants from piezoelectric actuation.

The stress resultants due to the actual strain field can be written in terms of the elastic

constants, Q;;, and strains, €. , as follows.
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(19)

Substituting the expression for strains from equation (10), the plate constitutive relations

are expressed as follows.
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where the plate stiffnesses are defined as follows.
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The stress resultants due to piezoelectric actuation can be similarly defined as follows.
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(0 M) T Qo z e (=126 (24)

-h/2

where the stiffness matrix, 6“, includes the elastic constants of the piezoelectric material

only. Using the stiffness matrices for the PZT material, the stress resultants can be

expressed as

NH Ay Apa Ajg | Bri Bz Big | Eqy Epz Ege JAI
Nb A Age By, By E Eg Ay
P sym A 66 LSym B66 JLsym E66 LA6
Ng
P _
M! 7 0
NP = Mg = 0 0 <
MY i 0
25
pP ) (25)
b 0
172 symmetric 0 0
Py I i (10

where the PZT stiffness matrices are given by the following equation.
hi2 — 3 -
(A ii> Bij- Eij): | Qij(la z, z )iZ (,j =1,2,6) (26)
-h/2

The box beam equations of motion are derived using the Hamilton’s principle [24]

which assumes the following form, in the absence of any nonconservative forces.

t
SI[K-(V+U)lt=0 (27)
3!

where & represents the variation and K is the kinetic energy, V is the potential energy due

to external forces, U is the strain energy and t; and t; are initial and final times,
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respectively. Using variational principles, equation (27) may be written in terms of the
individual wall (plate) quantities as follows.

[ N

tJ] [E]SKi -V, —SUi}dtzo (28)
where N is the total number of walls (N=4 for a box beam). The variations of the elastic
strain energy, the potential energy and the kinetic energy, in each plate, are written as

follows.

h/2
oU = I I(GISEI + 02682 +0'4684 +05685 + Gé&ﬁé)ﬂAdZ
-h/2A

SV = [ p(x,y)dwdA
A

5 h/2

== jp(ﬂ2+§?+v¥2)lAdz (29)
2 _n/2

where (-) denotes differentiation with respect to time, A is the plate area, p is the

material density and p(x,y) is the distributed load. Substitution of equation (29) into

equation (28), integration and collection of the coefficients of various terms, yields the

following equations of motion.
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where the stress resultants N;, M;, P;, Q; and R; are as defined in equation (18) and the

inertia terms are defined as

h/2

(11,12,13,14,15,17)= | p(l, z.2°,2°, 7", zé)iz
-h/2
I, =12—£2—14
I =15—3—:1—217
'13=13—£715+%17 (31)

For the solution of the equations of motion, appropriate natural or essential boundary

conditions [70] needs to be specified.

The finite element method is well suited to solve the above equations of motion,
accounting for discontinuities in the material properties and complex geometry. The
discretized equations of motion are obtained using a two-dimensional finite element
formulation in the local coordinate system of each individual wall. To maintain
continuity of displacements and to ensure that the walls remain normal to each other after
deformation, appropriate constraints are imposed on displacements and rotations of
individual walls at the four corners of the box beam cross section (Figure 3). A four
noded plate element is used with 11 degrees of freedom per node. This element is cl

continuous in the zeroth order displacements (ug, v, and w, ) and CO continuous in the
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higher-order terms (y, and y,). The nodal degree of freedom vector is defined as

follows.

WyoWy (32)

Using shape functions, each of the unknowns is interpolated over the element as follows.

US(xy) = ENS(x,y)QS (33)

i=1

where n is the number of nodes (n=4), N is the shape function and superscript 'e' denotes

elemental representation. Bilinear shape functions are used for ugy, vo, yy and vy,
whereas a 12 term cubic polynomial is used for the transverse displacement w,. The
variations of kinetic, strain and potential energies, in terms of the elemental quantities, are
obtained and the elemental matrices are assembled leading to the following equations of

motion.
M¥+Kq=f+Fp (34)

where the global mass and stiffness matrices are given by

o

M= pSTSdV} (35)
i=lILVy

K = % f BTGBdV} (36)
i=lLvy

and the force vectors are as follows.

f = %{J NTp(x,y)dA} 37)
i=lILA
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4
Fp =.z{ J NTNPdA} (38)
i=ILA
In equations (35) to (38), the summation is performed over walls 1 through 4 (number of
walls=4 for a box beam) and V and A represent volume and surface areas; respectively.
The material density is denoted p and p(x,y) is the distributed load (such as, aerodynamic
pressure). The matrix Q is the material stiffness matrix and matrices B and S relate the
nodal degree of freedom vector to strains and displacements, respectively. The term NT
denotes transpose of the shape functions, NP is the stress resultant due to piezoelectric
actuators and Fp is the corresponding force vector. Since the accurate prediction of
structural damping is difficult, it is ignored in the present analysis. Also, its effect is
usually small on aeroelastic stability and ignoring it generally leads to conservative

results [34].

3.1.2 Aeroelastic Analysis

The objective of the aeroelastic analysis is to obtain velocity and atmospheric density
or altitude where the aeroelastic system is neutrally stable. The V-g (velocity - damping)
method of flutter prediction [33] is the classical method which has been extensively used
over the past decades. It assumes that the aeroelastic system performs a simple harmonic
motion and uses the purely oscillatory air loads. Since these assumptions are valid at the

flutter condition, this method yields accurate results for flutter boundary.

V-g method

The equations of motion for the wing structural-aerodynamic system is solved with

the aeroelastic forces represented by the force vector f. Assuming simple harmonic
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motion, wing elastic deformation and aeroelastic forces are represented by q = c_lei“)t and
f=fe® , respectively. Substituting the above into equation (34) yields
(~0°M +K)g =f (39)

where the stiffness term, K, now also includes the piezoelectric actuation effects. The

unsteady aerodynamic force, f, can be expressed as a linear combination of q as follows.
f = q,F(io)q (40)

where F(iw) is the aerodynamic influence coefficient and q, denotes freestream

dynamic pressure. Substituting for f in equation (40) results in the following equation.

(~0°M +K —q_F(i0))g = 0 (41)

Equation (41) represents an eigenvalue problem and the solution of the following

determinant

~0*M+ K -qF(io)=0 (42)

provides the roots which determine the stability of the system. To solve the above

problem, artificial damping, g, is introduced and equation (42) is rewritten as

~0 M+ (1+ig)K - g F(io)= 0 (43)

The problem size for flutter solution can be reduced by using the modal approach. It
is well known that only the low frequency modes govern wing flutter characteristics and
the high frequency modes have little effect on the flutter solution [33]. Using the first
several low frequency modes, equation (43) is transformed into modal coordinates and is

rewritten as follows.
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~0?M' + (1 +igK” ~q F (iw)=0 (44)

where M*, K" and F' are the generalized mass, stiffness and aerodynamic influence
coefficient, respectively. The generalized aerodynamic forces are computed using the
constant-pressure lifting surface method [32] at a given Mach number for specified values
of the reduced frequency 4, assuming simple harmonic motion. This method is based on
the linearized aerodynamic potential theory [33]. The lifting surface is divided into small
trapezoidal panels, with unknown constant pressure, arranged in strips parallel to the
freestream. The downwash boundary condition calculated from the deflection of
structural modes is satisfied at mid-span three-quarter chord point of each panel. The
procedure is implemented in the "ZONA6' computer code [71] which is used in the
present research. The solution of equation (44) yields the variations of damping and
frequency with respect to the freestream velocity. At the flutter point, the artificial

damping, g=0.

Laplace domain method

The V-g method gives accurate results at the flutter point, but it does not generate
reliable frequency and damping histories since the assumed harmonic motion is not valid
at other conditions. Also, this method requires iterative calculations to arrive at the
'matched flutter point', which poses difficulty in using it within an optimization
procedure. The Laplace domain method of flutter analysis [34] produces valid damping
and frequency history and, thereby, affords an insight into the physical phenomena
leading to flutter. This method is non-iterative and suitable for automated optimization
procedures. However, the Laplace domain method requires the air loads for arbitrary

motions. Since aerodynamic calculations are well developed only for simple harmonic
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motions, approximations are necessary to define air loads. These approximations reduce

the accuracy of flutter prediction, but the method is still very useful.

Laplace transformation of the governing equation of motion (Equation (34)) yields

the following.

(s*M +K)q(s) = f(s) (45)

where s denotes the complex Laplace variable. The aeroelastic load f(s) can be expressed

as a linear combination of q(s) as follows.
f(s) = 4.F(p)a(s) (46)

where p is the nondimensionalized Laplace variable and F(p) can be regarded as the

aerodynamic transfer function. Substituting for q(s) in equation (45) gives

("M +K —qF(p)g(s =0 (47)

Equation (47) can be transformed into modal coordinates and rewritten, using several low

frequency modes as follows.

(M +K - q F (p)EGs) =0 (48)

where M*,K* and F are the generalized mass, stiffness and aerodynamic forces

respectively and &(s) denotes the generalized coordinate.

The unsteady aerodynamic forces are obtained assuming simple harmonic motion [32,
71] similar to the V-g flutter calculations. However, F (p) contains transcendental terms
when expressed as a function in the Laplace domain. To obtain a finite number of terms,

the aerodynamic forces are approximated by a rational function of the
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nondimensionalized Laplace variable p. Following the method of [35-36], the

approximating function for F (p) is expressed as

~ n p
F(p)= Ag+Ap+Ayp° + T(Ap)—— (49)
1=1 p+b

where n is the number of partial fractions (order of fit). The partial fractions approximate
the time delays inherent in unsteady aerodynamics [36]. The denominator coefficients b,
in equation (49) are selected from the range of reduced frequencies for which unsteady
aerodynamic forces are computed. Substituting ik for p along the imaginary axis, the
coefficients, Ay, A, etc. are computed from the available generalized forces such that
the approximation error is minimized in the least-squares sense. Substituting equation
(49) into equation (48), the equations of motion are reduced to a series of 6N first-order

equations [36] of the form

sX = AX (50)

where N is the number of normal modes used. The eigenvalues of matrix A provide the
roots of the flutter equation. For stability of the system, all real roots should be negative.
At flutter condition, one of the roots is purely imaginary. The above procedure is
implemented in the computer code 'Interaction Structures, Aerodynamics, and Controls'

(ISAC) {72] and is used for flutter analysis in this research.

3.1.3 Aerodynamic Analysis

Lift and drag for the wing are calculated to define its aerodynamic efficiency (lift-to-
drag ratio). The constant-pressure lifting surface method [32, 71], used for unsteady
aerodynamic calculations, can also predict steady normal forces with the value of the

reduced frequency being set to zero. Induced drag and lift are obtained by resolving the
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normal force along the freestream and the direction perpendicular to it. The other two
components of wing drag at high subsonic or transonic Mach numbers include skin-

friction drag and compressibility (wave) drag.

The skin-friction drag arises from the viscous effects in the mostly turbulent boundary
layer adjacent to the wing surface. First, a flat-plate skin-friction drag coefficient (Cy) is
calculated, which is multiplied by a 'form factor' (FF) to account for the viscous
separation effects. The flat-plate skin-friction coefficient depends upon the Reynolds
number, the Mach number and the skin roughness. For turbulent flow, which is generally
the case at high subsonic or transonic Mach numbers, the flat-plate skin-friction
coefficient is determined using the Schlichting empirical formula, corrected to include the

Mach number effect [40], as follows.

0.455

C, = 51
' (logjg RY* ¥ (1+ 0.144M?)65 GD
where M is the Mach number and the Reynolds number (R) is defined by
R=pV{/p (52)

where p is the atmospheric density, V is the velocity, ¢ is the mean aerodynamic chord
length and p is the coefficient of viscosity. For relatively rough surfaces, the friction
coefficient is higher. Therefore, a 'cut-off Reynolds number' is determined using the

mean aerodynamic chord, 7, and a surface roughness parameter, « .

Ry opr = 44.62(£/x) 0P M6 (53)

The lower of the cut-off Reynolds number and the actual Reynolds number is used in

equation (51). The form factor for the wing is obtained as follows.
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FF={1 0.6 (1)+100(%}4}|3.34M0‘ls(cos/\m)o'zs] (54)

+
(x/¢)y \C

where (x/c)_ denotes the chordwise location of the airfoil maximum thickness point,

ty . e . . .
(—) is the airfoil thickness to chord ratio and A, refers to sweep of the maximum
c

thickness line. The skin-friction drag coefficient can now be calculated from the

following equation.

_CrFFSyy (55)
Dskin - friction Sref
where
Swet _ {1 977+ 0.52(1)} (1) >0.05 (56)
c C

ref

represents the ratio of 'wetted area' to 'reference area'.

The compressibility drag refers to the pressure drag resulting from increase in Mach
number above low subsonic value. At high subsonic (or higher) Mach numbers, the local
velocities on the upper surface of the wing may become sonic or even supersonic. This
may lead to shock formation on the top of the wing which increases drag due to reduction
in the total pressure through shock waves. Drag may also increase due to thickening or
separation of the boundary layer as a result of the severe adverse pressure gradient caused
by the presence of shocks. An empirical method, called the 'crest-critical Mach number
method' [41], has been used in this research to obtain the compressibility drag. The 'crest'
is the point on the airfoil upper surface to which the freestream is tangent. In this
method, the freestream Mach number which gives sonic flow at or behind the crest of the
airfoil is first determined. The crest-critical Mach number is a function of airfoil

thickness-to-chord ratio, lift coefficient and wing sweep. At a Mach number 2 - 4 percent
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(depending on wing sweepback angle) higher than the crest-critical Mach number, the
drag rises abruptly. This Mach number is called the 'drag divergence Mach number’,
which can be determined from the crest-critical Mach number. The compressibility drag
coefficient is then calculated using the ratio of freestream Mach number to the crest-
critical Mach number and empirical data (based on existing transport aircraft) for the

increment in drag.
3.2 Optimization Technique

The optimization techniques described next are suitable for multiobjective
optimization with objective function/constraint approximation and continuous/discrete

design variables.

3.2.1 K-S Function Approach

The K-S function technique [16] is used to efficiently integrate the objective function
and constraints into a single envelop function. The resulting unconstrained nonlinear
optimization problem is solved using the Broyden-Fletcher-Goldberg-Shanno (BFGS)
algorithm [14]. The derivatives of the objective functions and the constraints, with
respect to the design variables, are calculated using the forward finite difference

technique.

Using the K-S approach, each of the original objective functions is transformed into
reduced objective functions as follows.

. F(® .
F (@) = —‘}ST) ~1.0-ggy <0, i=1,.,NOBJ (57)
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where Fio is the value of the original objective function F; calculated at the beginning of
the cycle, @ is the design variable vector and g, is the value of the largest constraint
and is held constant during each cycle. It is assumed that the constraints g;(®) ( =1, 2,
+ . NC) are scaled to lie between -1 and 1. The reduced objective functions are
analogous to constraints. A new constraint vector f (®) (m=1,.., M where M = NC +
NOBJ) is defined by combining the original constraints and the reduced objective

functions. The new objective function is defined as follows.

Fieg(®) = 0 +_1.10ge I\Z/[:ep(fm (@) finax ) (58)
p m=1
where f .. is the maximum value of f (®) and remains constant during the
optimization cycle. The scalar multiplier p is similar to draw-down factor of penalty
function methods. Larger values of p move the K-S function curve closer to the largest
constraint [14]. The initial value of this parameter is user supplied and its value is
increased as the optimization proceeds. The new objective function Fyxg(®), which
represents an envelope function representing the original objective functions and
constraints, can now be minimized using any unconstrained optimization technique. In
this research, the search direction vector is obtained using the Broyden-Fletcher-
Goldberg-Shanno (BFGS) algorithm which is a quasi-Newton technique [14]. This is
followed by a one-dimensional search for the minimum of the K-S function using the

three point quadratic approximation for step length calculation [14].

3.2.2 Approximation Technique

During the one-dimensional search to minimize the composite K-S function, several
evaluations of the objective functions and constraints are necessary. It is computationally

expensive to carry out exact analysis all the time. Therefore, an approximation technique
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is used to provide objective function and constraint values during the one-dimensional
minimization. The two-point approximation technique [18], which has been found to be
well suited for nonlinear optimization problems, is applied. This technique uses the
gradient information from the previous and current design cycles to obtain the exponent

used in the expansion. The technique is formulated as follows.

. NDv| (¢ ™" do. OF
F(D) = F(D, 3 (ﬁJ 1.0 |H () 59
(@)= H 0)+n=l|i¢0n }pn 5¢>n(°) &

where IE(CI)) is the approximation to the objective function F(®) at a neighboring design
point @ (vector of ¢, design variables) based on its values and gradients at the current
design point @, and the previous design point ®,. The exponent p,, considered as a
'goodness of fit' parameter, explicitly determines the trade-offs between traditional and
reciprocal Taylor series expansions. In the limiting case of p, = 1, the expansion is the
first order Taylor series, and when p, = -1, the two-point exponential approximation
reduces to the reciprocal expansion form. The exponent p, is obtained from the
following equation.

or | 2@} toa 22 o)

0dn 09y

Pn = IOge {bln }_ lOge ‘@)OH }

+1.0 (60)

The exponent p, is defined to lie between +1 and -1. If any singularity is encountered,
the exponent is set to +1 to obtain linear Taylor series expansion. A similar

approximation is obtained for the constraint vector too.

3.2.3 Hybrid Optimization
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The inclusion of both continuous and discrete design variables significantly
complicates the optimization problem. This is because the discrete design variables are
not compatible with traditional gradient based optimization methods. Similarly, the
continuous variables are not compatible with combinatorial optimization methods, such
as branch and bound techniques, which require discrete values to operate. Therefore, a
hybrid optimization technique developed by Seeley and Chattopadhyay [19] which

combines both types of design variables is used.

The general continuous/discrete optimization problem can be mathematically stated

as follows.
Minimize f(®_, D) (61)
Subject to g((DC,CDd)j <0 (j=1,2,.., NCON) (62)

Side constraints @, <P <D

(Dd E[(qu’(pzq’@:;q"”’@d ] (63)

q

where f is the objective function, gj are the constraints, @ are the continuous design
variables and @ are the discrete design variables which can be selected from among a
set of q preselected values. The hybrid optimization procedure is based on Simulated
Annealing (SA) [73] where the design space is sampled by repeatedly perturbing the
discrete design variables. At each iteration of the SA procedure, the objective function is
minimized with respect to the continuous variables using a BFGS search algorithm [14].
This significantly improves the efficiency of the hybrid algorithm by directing the search
using the gradient information when available. The constrained problem is formulated

using a penalty function approach [14].



4. MDO Applications for Smart Composite Wings

The analysis techniques and optimization methods described in the preceding chapter
have been applied to the design of a composite wing, with and without smart materials
[74-80]. The aeroelastic stability of composite wings was investigated using the V-g
method in [74-75] and the Laplace domain method in [76]. A hybrid optimization
technique (combining both continuous and discrete design variables) was adopted for the
wing designs investigated in [77-78]. Multidisciplinary optimizations of business jet type
composite wing and smart composite wing are reported in [79] and [80], respectively.

These applications, from the current research, are presented in the following sections.
4.1 Aeroelastic Stability Using Higher-Order Laminate Theory

First, it is necessary to investigate the effect of higher-order theory on aeroelastic
stability of composite wings. To demonstrate this, aeroelastic analysis is performed for a
simple scaled wing model shown in Figure 5. The wing semi-span and root chord are 90
and 20 inch, respectively. The aspect ratio and the taper ratio of the wing are 12 and 0.5,
respectively, and the mid-chord is unswept. It is assumed that the box beam is the
principal load-carrying member of the wing which extends through the entire semi-span
and is fixed at the root. The width and the height of the box beam are assumed to be 50
and 10 percent of the local wing chord; respectively. The center of the beam coincides
with the mid-chord of the wing. Each wall of the box beam is made up of eight
unidirectional composite laminates (each consisting of several plies with identical
orientation), which are symmetric about the mid-surface. The composite material (Gr-Ep
T300) properties are listed in Table 1 [81]. The material density is multiplied by a factor

of eight to account for the non-structural mass of the wing. The walls have a uniform

spanwise thickness of 0.80 inch. The top and the bottom walls have (0/90/30/30)s lay-up,
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while the vertical wall ply angles are (45/-45/45/-45)s. The direction of positive ply

angle is indicated in Figure 5.

Y
A

20“

90"

Figure 5. Wing planform for aeroelastic stability analysis

Table 1. Material properties (Gr-Ep T300)

EL (msi) 19.00
ET(msi) 1.50
GLT(msi) 1.00
GTT(msi) 0.90
VLT 0.22

p (slugs/ind) 1.68*10-3

The structural analysis of the box beam is performed with 15 elements spanwise and a
single element chordwise. The structural degrees of freedom for the box beam are 664
and 844 using the CLT and the present approach, respectively. The first ten normal
modes of vibration are used in the subsequent analysis and the natural frequencies are

presented in Table 2. Although, bending-torsion coupling exists due to the ply
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orientations used, for identification purposes only the dominant mode shapes are
indicated in Table 2. Table 2 shows that the natural frequencies of the beam bending
modes (B1, B2, B3, B4 and B5) are somewhat higher for the CLT compared to the
present approach. The torsional mode (T1) exhibits the largest difference in the natural
frequency (about three hertz), the CLT value being higher again. This is due to the fact
that the transverse shear stresses are ignored by the CLT, but are efficiently modeled in
the present approach. The frequencies of the chordwise bending modes (C1, C2, C3 and
C4), which are not used in the flutter analysis, are identical using both theories.

Table 2. Natural frequency (Hz) and modes

Mode Mode Higher-order Classical

Number Type Theory Theory
1 Bl 5.34 5.37
2 Cl 18.17 18.17
3 B2 27.75 27.94
4 B3 71.42 71.99
5 C2 84.07 84.07
6 B4 130.71 132.36
7 T1 134.43 137.23
8 C3 202.32 202.32
9 B5 205.75 207.70
10 C4 256.42 256.42

Legend: B- Beam bending, C- Chordwise bending, T- Torsion

Mode shapes for the first beam bending (Mode 1) and the first torsion (Mode 7) are

presented in Figures 6 and 7 for the CLT and Figures 8 and 9 for the present theory. The
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mode shapes are normalized such that the generalized mass equals unity. Mode 1 is a
pure beam bending mode, whereas Mode 7 is a coupled fourth bending/first torsion mode
in both cases. These two modes are selected for comparison because of their contribution
in wing flutter as will be shown later. The response of Mode 1 is nearly identical (as are
the natural frequencies, see Table 2) using both theories, but differences are observed in
Mode 7. The present approach shows somewhat higher bending displacements in this
mode, whereas the torsional displacements are slightly lower compared to CLT.
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Figure 7. Torsional mode shape (CLT)
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The generalized aerodynamic forces are computed at M=0.95 with the wing divided
into 48 panels. Flutter solution is obtained using the V-g method for various values of
the atmospheric density (an input parameter) till the flutter speed and the air speed match
each other ('matched flutter point'). The flutter results, in terms of variations of frequency
and damping with airspeed, are presented in Figures 10 and 11 using both CLT and the

present approach.
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Figure 10. Frequency vs. Airspeed

Flutter is often caused by the coupled bending and torsional motion of aircraft wings,
wherein the frequencies of these two modes come close or coalesce around the critical
flutter speed and the damping of either of the modes goes to zero [82]. Figure 10 shows
the tendency of the first bending (Mode 1) and the first torsion (Mode 7) modes to get
close to each other. For the present approach, the separation between the two frequencies

is smaller and the tendency to come close is more pronounced compared to the CLT.
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As a result, the damping of one of the modes (Mode 1) becomes zero at lower airspeed, as
predicted by the present approach (Figure 11). The flutter speeds, using the present
approach and the CLT, are 455 and 503 KEAS, respectively. This significant difference
in flutter speed of 48 KEAS (about 10 percent) is very critical. Further, it is important to
note that the CLT results are nonconservative. This establishes the need for using refined

structural modeling techniques since flutter is a catastrophic phenomenon.
4.2 Effects of Ply Orientations on Aeroelastic Stability

To study the effects of elastic couplings on aeroelastic stabilty of composite wings,
various ply orientations are investigated. The wing geometry is the same as in the

previous section (Figure 5), with the exception that the walls now have an uniform
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spanwise thickness of 0.16 inch and non-structural masses are not included in the

analysis.

Three types of ply lay-ups, (0/90/0/90)s, (0/90/30/30)s and (0/90/-30/-30)s, are used
for the top and the bottom flanges of the wing. The vertical webs have the cross-ply
orientations of (0/90/0/90)s in all cases. For the cross-ply lay-up there is no elastic
coupling, whereas the (0/90/30/30)s orientation displays negative bending-twist coupling,
that is, upward bending causes nose down twist. The stacking sequence (0/90/-30/-30)g
displays positive bending-twist coupling, that is, upward bending generates nose up twist.
The structural analysis of the box beam is performed with 10 elements spanwise and a
single element chordwise. The first six normal modes of vibration are used in the
subsequent analysis. The natural frequencies and the associated modes are listed in Table
3. The first, third and fourth modes are beam bending modes and the fifth mode
represents the first torsion mode in all cases. The second and the sixth modes are
chordwise bending modes for (0/90/30/30)s and (0/90/-30/-30)s orientations. For the
cross-ply case, the second mode is a chordwise bending mode, whereas the sixth mode is

a torsion mode.

Table 3. Natural frequency (rad/sec) and modes for different ply lay-ups

Mode (0/90/0/90)s  (0/90/-30/-30)s (0/90/30/30)s
1 75,B 66, B 66, B
2 289, C 269, C 269, C
3 331,B 309, B 309, B
4 761, B 738, B 738, B
5 875, T 1028, T 1028, T
6 1134, T 1195, C 1195, C




53

Legend: B- Beam bending, T- Torsion, C- Chordwise bending

The generalized aerodynamic forces are computed at M=0.8 for values of the reduced
frequency between 0 and 1. The wing is divided into 48 panels. The Laplace domain
method is used in the flutter calculations. Rational function approximation of the
generalized aerodynamic forces (tabular data) is performed using four denominator
coefficients. These coefficients are selected to be 0.2, 0.4, 0.6 and 0.8 and produce a very
good fit. Figures 12-15 show a comparison of the tabular data with s-plane fit for real
and imaginary parts of the two of the aerodynamic influence coefficients, F(1,1) and
F(2.,2). These comparisons are typical of the rest of the coefficients. The approximation
error for the aerodynamic forces is generally less than one percent and it never exceeds
six percent. Total least-square error for the rational function approximation equals 0.36

percent.

1800 Total LS error=0.36

—B— tabular data

— s-plane fit

| T T | 1
0 02 04 06 08 1

Reduced frequency

Figure 12. RFA ofreal F(1,1) aerodynamic coefficient
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The eigenvalues of the characteristic equation vary with dynamic pressure. A root
locus constructed by varying the altitude for a given Mach number gives flutter dynamic
pressure when one of the real roots becomes zero and the imaginary root is non-zero.
Divergence is indicated when both the real and the imaginary roots of any one mode
reduce to zero. The variations of frequency and damping with dynamic pressure provide
an insight into flutter and divergence onset. Figures 16-24 show the dynamic pressure

root locus, frequency history and damping history for the three different ply lay-ups.
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The cross-ply lay-up wing with (0/90/0/90)s ply orientation flutters at 4.88 psi when

the frequencies of the first and the fifth modes come close and the damping of the first
mode becomes zero (Figures 16-18). This lay-up has uncoupled elastic modes and the
fifth mode is the first torsion mode for this wing. The wing with (0/90/-30/-30)s ply
orientation does not show flutter, but due to a positive bending-twist coupling, it is prone
to divergence. As the flight dynamic pressure increases, the frequency and the damping
of the first bending mode reduce to zero at 2.66 psi (Figures 19-21). For the wing with
(0/90/30/30)g ply angles, flutter or divergence is not encountered at the Mach number
investigated (Figures 22-24). As mentioned earlier, this lay-up has negative bending-
twist coupling which prevents divergence. Similar trends for the effects of ply orientation

on flutter and divergence have been observed by other researchers [83].
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4.3 Application of Hybrid Optimization Technique

The hybrid optimization technique has been applied in the continuous/discrete design
variable optimization of a composite wing. The wing weight is used as objective function
which is minimized with constraints on flutter/divergence speed and stresses at the wing
root due to the specified air loads. Wing root chord and wall thickness are used as

continuous design variables, whereas the ply orientations are treated as discrete variables.

4.3.1 Optimization Problem

The wing geometry, for this optimization problem, has unswept mid-chord (similar to
Figure 5), an aspect ratio of 20 and a taper ratio of 0.5. The root chord is varied during
the optimization and consequently, the wing span and area also vary. The objective is to
minimize the weight of the box beam which represents the structural member in the wing.

Therefore, in the optimization problem,

f=W (64)

where W is the weight of the box beam. The weight of the remaining components in the
wing, such as the skin, is not considered in this work. Constraints are placed on the
flutter speed and the maximum allowable stresses. The flutter/divergence speed (Vf) is
constrained to be greater than 450 knots equivalent air speed (KEAS) at a flight condition

of Mach=0.7 at sea level. This constraint is expressed as follows.

\%
—L <9 (65)

1oL <
&1 450
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The Tsai-Wu failure criterion [84] is imposed on the critical ply stresses at the root
section where material failure is most likely to occur. The criterion states that failure

initiates when the following inequality is violated.

FC = Fio-i +Fijcicj <1 (l,_] = 1,2,...,6) (66)

where G; represents stresses in the material coordinate system and Fi and Fij are related
to the tensile and compressive yield strengths of the material (Table 4). This constraint is

expressed as follows.

The static lift and drag are computed empirically [40] for the above flight condition at an
angle of attack of 3.5°. This results in a lift force of 2350 Ib and a drag force of 110 Ib for
the reference wing. This load is assumed to remain constant during the optimization.

The spanwise load distribution is assumed to be elliptical over the wing planform. The

root chord (cy) is defined as a continuous design variable as follows.

c, =d, 15"< ¢, < 25" (68)

where the upper and lower bounds are also indicated above. The actual dimensions of the

wing, such as the semi-span (s), the tip chord (ct) and the wing area (A) are all computed
from cr so as to retain the aspect ratio and the taper ratio values mentioned earlier. The
box beam is constructed from Carbon-PEEK composite material [81]. Material

properties are presented in Table 4.
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The box beam walls are assumed to be made of several unidirectional composite plies

with thickness tp=0.005”. The quantity N, which denotes the number of two-ply layers in

each laminate, is an integer value and is defined as a discrete variable

N = ¢2 (69)

where ¢, = [4,5,6,..,14]. The box beam wall thickness, h, is then determined as

h = 2Nt, (70)

where it is assumed that all four walls have the same thickness. Therefore, the total
number of plies in each wall is 8 <2N < 28 and h ranges between values of 0.04” <h <
0.14”.

Table 4. Material properties (Carbon-PEEK)

EL (msi) 19.40
ET(msi) 1.29

GLT(msi) 0.74

GTT(msi) 0.50

gLT 0.28
density 1.8x10-3
(slug/inch3 )
Ultimate Strengths

XTiksi) 309.0
XC(ksi) 160.0
YT(ksi) 11.6
Y C(ksi) 29.0

S(ksi) 232
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Four design variables (d) 304,90 5,¢6) are used to describe the stacking sequence in

each of the box beam walls as follows.
Top wall [6:/0,] =[03/d4ln
Bottom wall [0, /0,] =[~05/-d4]n
Left side wall [0,/8,]; =[05/ds]n

Right side wall [6:/6,] =[-05/—dgIn

where the material axes for the plies in each wall are referenced to their respective local
coordinate systems (Figure 3). In the global coordinate system, the top and the bottom
walls have the same ply angles, as is the case for the two side walls. The ply angles are
allowed to vary from within a range of pre-selected values ¢4=[-45", 0°, 45°, 90°]. All
four walls are assumed to have the same thickness, which does not vary along the span or

the chord.

4.3.2 Results and Discussions

Results obtained using the hybrid optimization procedure are presented in Table 5 and
in Figures 25-28. Optimization results are compared with a reference design, which is
selected based on engineering judgment. It should be noted that the optimum design is
independent of the initial design due to the probabilistic nature of the hybrid optimization
procedure. The penalty function optimization iteration history is presented in Figure 25
at each iteration of the simulated annealing algorithm which consists of several BFGS

evaluations. Both the trial designs and the best design obtained are presented.



Table 5 Hybrid optimization results
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Reference Optimum
Number of plies 28 18
Root chord (in.) 15.0 15.4
Wall thickness (in) 0.14 0.09
Stacking sequence
top and bottom walls [0°/90°]14 [0°/-45°]9
side walls [45°/-45°]14 [0°/0°]9
Natural frequency (hz) 9.4,34.1,50.7, 116.9, 8.75,34.7,46.8, 107.7,
154.7,163.6 159.5,170.1
Flutter point 29 hz, 2nd mode 74 hz, 5th mode
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Figure 25. Penalty function iteration history
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Figure 26 Weight reduction through hybrid optimization

Initially, the flutter constraint is violated which results in very large values of the penalty
function which are not presented due to the scale of the graph. Due to heuristic nature of
the optimization algorithm, a large number of function evaluations are required which
make it computationally expensive. The optimum state is reached in less than 100
iterations and the optimization procedure is terminated after 250 iterations since no better
design could be found. There is a significant reduction in the weight of the structural
member of the wing (32 percent, Figure 26) along with a large improvement in the flutter
speed (75 percent, Figure 27) due to the optimization. The Tsai-Wu stress criterion is
satisfied by the reference as well as the optimal design (Figure 28). Since the wing root
chord for the reference and the optimal wings are nearly same (Table 5), weight reduction
is due to the fewer number of plies in the optimal wing. Through optimization of the

stacking sequence, even a lower wall thickness provides higher flutter speed.
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Study of the frequencies and modes for flutter show important trends (Table 6). For
the reference wing, the second mode, which is a coupled bending and lag mode with a
natural frequency of 34 Hz, flutters at 29 Hz. The first torsion mode is the sixth mode
~ with a natural frequency of 164 Hz. At the flutter condition, the frequencies of the
second and the sixth modes almost coalesce and the sixth mode also flutters at a slightly
higher speed. For the optimal wing, flutter occurs at the fifth mode (at 74 Hz), which is

the first torsion mode with the natural frequency of 160 Hz. The first four modes are
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bending or coupled bending/lag modes. Thus optimization essentially stiffens the

bending modes to increase the flutter speed.

Since the aspect ratio and taper ratio are fixed in this study, smaller root chord also
means smaller span and lower wing area. The optimal value of the wing root chord is
very near to the minimum value specified to achieve higher stiffness. This trend is
expected in the absence of other design considerations such as wing loading (which

affects landing/take-off speed, maneuverability etc.) and internal fuel volume.

4.4 MDO of Composite Wings

The developed MDO procedure with refined analysis and optimization technique
(gradient bassed) is applied to the design of a composite wing. The wing configuration of
a high speed business jet type airplane is selected for the optimization. Though the
developed procedure is capable of handling multiple objective functions (and
constraints), the example considered here includes only one objective function (with two

constraints). The Laplace domain method of flutter analysis is used in this optimization.

4.4.1 Optimization Problem

The objective is to minimize the weight (W) of the box beam which represents the
load carrying structural member of the wing. The cruise Mach number and altitude are
assumed to be 0.85 and 26000 ft, respectively. In accordance to established design
practice, the flutter/divergence speed is required to exceed 1.20 times the cruise speed.
Therefore, the flutter/divergence dynamic pressure (q¢) is constrained to be at least 3.7
psi. Constraints are imposed on the maximum allowable stresses due to static loading of
the wing corresponding to a 3g maneuver. An elliptic spanwise load distribution is

assumed. The Tsai-Wu failure criterion [84] is imposed on the ply stresses at the root
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section. The objective function and constraints are expressed in a similar manner as in
the previous section (Equations (64) - (67)). The composite ply angles and laminate

thicknesses are used as continuous design variables.

4.3.2 Results and Discussions

The selected reference wing has aspect ratio of 10, taper ratio of 0.35 and mid-chord
sweep of 30° (Figure 29). The wing geometry is held fixed during optimization. The
width of the box beam is assumed to equal half the wing chord. The wing thickness-to-
chord ratio is assumed to be 12 percent, which accommodates the box beam with height
to width ratio of 20 percent. The box beam is constructed from Carbon-PEEK composite
material [81] whose properties are presented in Table 4.

Y
A

70 \ » X

Structural Ref. Axis

Composite Box Beam
236 in. i

Figure 29. Wing geometry for MDO of composite wings
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The box beam walls are assumed to be made of eight unidirectional composite
laminates (each consisting of several plies of identical orientation), stacked
symmetrically. It is assumed that the laminates in all four walls have the same thickness
and that the thicknesses do not vary spanwise or chordwise. The top and the bottom
walls have the same ply angles, as is the case for the two side walls. The ply angles and
laminate thicknesses are allowed to vary, thus resulting in 12 design variables. The ply
angles are allowed to vary between -90° and +90° and the laminate thicknesses vary
between 0.006 inch and 0.048 inch during optimization. A reference configuration with

conventional ply orientations of (0°/90°/+45°/-45°)g for each wall and uniform laminate

thickness of 0.024 inch is used as the initial design.

The structural analysis of the box beam is performed with 10 elements spanwise and a
single element chordwise. The first six normal modes of vibration are used in the
subsequent analysis. The mode shapes are normalized such that the generalized masses
are unity. The generalized aerodynamic forces (GAF) are computed at M=0.85 for 20
values of the reduced frequency between 0 and 1. The wing is divided into 48 panels.
Rational function approximation of the GAF's is performed using four denominator
coefficients. These coefficients are selected to be 0.2, 0.4, 0.6 and 0.8 which produce a
very good fit. Convergence is reached in 10 cycles during which the objective function
and the constraints are evaluated 208 times. The total time taken is 2 hr. 50 min. on Sun
Ultra 1 workstation. Results obtained using the optimization procedure are presented in
Table 6 and in Figure 30.

Table 6. Optimization results for MDO of composite wings

Reference Optimum

Stacking Sequence

top /bottom walls (0°/90°/+45°/-45°)g (-8°/70°/28°/-13°)g
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side walls (0°/90°/+45°/-45%)g (15°/48°/-5°/-24°)5

Laminate thickness (0.024/0.024/0.024/0.024)s  (0.019/0.023/0.024/0.023)s
(all walls, in.)

Wall thickness (in.) 0.192 0.178
Natural frequency 1.34, 5.55, 15.20, 1.58, 6.45, 17.44,
(first six modes, Hz) 22.63,31.94,37.94 22.30, 35.79, 37.51
Wing structural weight (1b) 129.2 119.1
Flutter dynamic pressure 3.0 3.7
(psi)
Tsai-Wu failure criteria 1.32 0.89
140 4
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Figure 30. Optimization results for MDO of composite wings

The structural weight of the wing reduces by eight percent from 129.2 1b. to 119.1 Ib.
(Figure 30(a)), whereas the flutter dynamic pressure increases by 23 percent from 3.0 psi
to 3.7 psi (Figure 30(b)). Also, from Table 6 and Figure 30(c), it is observed that the
Tsai-Wu stress criterion is strongly violated in the reference design (F,=1.32). Through
optimization of the stacking sequence, even a lower wall thickness (resulting in reduced
weight) satisfies the stress constraint (F,=0.89). The ply angles for the optimized wing
are (-8°/70°/28°/-13°)s in the top and bottom walls and (15°/48°/-5°/-24)s° in the side
walls. It should be noted that the buckling constraits are not imposed in this
optimization. The laminate thicknesses remain almost unchanged, except for the surface
laminates in each wall. It is to be noted that in a practical design, standard ply angles and

thickness are used. Therefore, the nearest values available must be used.
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Study of the mode shapes (Figures 31-34) indicates similarity between reference and
optimum designs. Modes 1, 2, 3 and 5 are bending modes and modes 4 and 6 are
pitching modes. There is very little coupling between the two types of modes. However,
the natural frequencies (Table 6) indicate an important change from reference to optimum
wing. The frequencies for the bending modes increase by about 15 percent, whereas
those for the pitching modes decrease slightly. As discussed later, it is the bending

modes that exhibit particular flutter characteristics in this wing.
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Figure 31. Bending mode shape for reference composite wing
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Figure 32. Pitching mode shape for reference composite wing
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Figure 33. Bending mode shape for optimized composite wing
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Pitching mode shape
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Figure 34. Pitching mode shape for optimized composite wing

Flutter is often caused when the frequencies of any two modes coalesce and the
damping of either of the modes goes to zero. For divergence, the frequency also drops to
zero along with the damping. Figures 35-40 present root loci and frequency and damping
history for the reference and the optimized wings. In both cases, frequencies of modes 1
and 2 coalesce and the damping of mode 1 becomes unstable. The optimized wing has
larger modal damping and somewhat wider separation between these two modes, leading

to higher flutter dynamic pressure.



— 250

(. CIT (O AT — 200

— 150

Im(s), rad/sec

M |~ *%0

Mode 2 — 50
[ [[[[[[[[[[H[[[Hﬂlw [ [
- q,=3.0 psi
Mode qf ps!
—r 1 1 T T LA B
-2 -1.5 -1 0.5 0 0.5 1

Re(s), rad/sec

Figure 35. Dynamic pressure root locus for reference composite wing

250 —
I I N AN T (T OO rCErneeeeerceeee
200 — S W AN (O O CCCCrr e
o
£ 150
E A W TN O A OO O CEC LT
:=’>,~ .
& 100~ sum—YOITIRI T 0 AL CCCETCCLCLLCC LT
E -
50 Mode 2
L l L mﬁﬁIHI[[[[I[[[[[[[[[[[[[[[[[[ (l
ode 1
0 — T T T
0 2 4 6 8

Dynamic pressure, psi

Figure 36. Frequency vs. dynamic pressure for reference composite wing



77

HEH[H[E[[[[[[[[[[[ (et
LEEmeCCeencoee oy g

Mg

Damping (stable, -ve)
o
|

Lo g

Mode 2

Dynamic pressure, psi

Figure 37. Damping vs. dynamic pressure for reference composite wing

— 250
pRniT L
I RN -
— 200
o
— 150 8
1 3
i g
(LA T 0
— 100 E
Mode 2 50
Ll [n[[[m[[mm‘!w [ I [
Mot i qf=3.7 psi
(11
—r 1 1 v 1 - =1 71
-2 -1.5 -1 -0.5 0 0.5 1

Re(s), rad/sec

Figure 38. Dynamic pressure root locus for optimized composite wing



250 —

— L

200 —
. A
?
B 150
'L'L‘ A N WA M YT (e O O CCALCECCCreeeeereeeee
> -
Q
§ 100 I W NN AT O AL A e eerreeree et
g
u -
Mode 2
%07 wmmmmmmmmnu[l[
| ode 1
0 T ‘ T | T | T I
0 2 4 6 8

Dynamic pressure, psi

Figure 39. Frequency vs. dynamic pressure for optimized composite wing

01— f

| ¢

Mode 1 [H

R 0.05 ll
5 [
- [
2 o BRI
g | ] lIIﬂ[l[[[[[m[m[[m[E EEEEE

Dynamic pressure, psi

Figure 40. Damping history for optimized composite wing

78



4.5. MDO of Smart Composite Wings

The developed MDO procedure is applied to the design of a smart composite wing,
with PZT actuators / sensors bonded to top and bottom surfaces of the box beam. The
wing configuration is similar to a long range high speed business jet. The dimensions are
scaled down to reduce the number of finite elements and aerodynamic panels. The
optimization problem now is associated with multiple objective functions and constraints.

All design variables are treated as continuous variables.

4.5.1 Optimization Problem

The objective is to minimize the structural weight of the wing while maximizing the
aerodynamic efficiency (lift-to-drag ratio). Wing sweep, wall thickness of the box beam,
ply orientations and the thickness of PZT actuators / sensors are design variables. The
problem is formulated as a minimization problem and the two objective functions are as

follows.

Minimize: ff =W
f, = D/L (71)

where W is the weight of the box beam (including actuators), D is the drag and L is the
lift. The cruise Mach number and altitude are assumed to be 0.90 and 30000 ft,
respectively. It is required that the aircraft does not encounter flutter/divergence
anywhere within the flight envelope. Therefore, a constraint is imposed on the flutter

dynamic pressure (q;) which is stated as follows.

qr
=1-=2L < 72
g1 = 8.0_ ( )
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This constraint implies that the flutter dynamic pressure must not be less than 8.0 psi
(M=0.9, SL). The wing strength constraint is based on a 3g maneuver at the cruise Mach
number and altitude. The use of wing loading, suitable for this class of aircraft (70 1b./sq.
ft.), and the selected wing area, the ultimate load for design (ultimate load factor = 4.5) is
determined. The spanwise load distribution is obtained from the panel code [71]
described earlier. A strength constraint is imposed on the ply stresses at the root section
where material failure is most likely to occur. The Tsai-Wu failure criterion (discussed

earlier in section 4.3) is used and this constraint is stated as follows.
g, =F.-1<0 (73)

The box beam walls are assumed to be made of eight unidirectional Graphite-Epoxy
(Table 1) composite laminates (each consisting of several plies of identical orientation),
stacked symmetrically. In an effort to reduce the computational expense, the following
assumptions are made about the ply orientations. The top and the bottom walls are
assumed to have identical ply orientations. The ply angles for the two side walls are also
maintained identical (but may be different from the top/bottom walls). Therefore, eight

design variables are used to completely describe the stacking sequence.

Top/bottom walls: ~ (8,/0,/63/0,), = (&1 /¢2/b3/94), (74)
Side walls: (01/0,/65/04) = (ds5/06/ b7/ dg), (75)

where the ply angles are allowed to vary between -90 deg. and +90 deg. It is assumed
that the laminates thicknesses do not vary spanwise or chordwise and all four walls have

the same thickness. The laminate thickness design variables are defined as follows.

(/o /t5/ty), = (09/010/011/012), (76)
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where the thickness of each laminate can vary between 0.01 in. and 0.03 in. The mid-
chord sweep of the wing is defined as a design variable with the upper and lower bounds

specified as follows.
Agia =013 257 <3 <40° (77)

It is assumed that a pair of actuators / sensors are surface bonded to the top and the

bottom of the box beam (covering the area of the first element along the wing root). The

thickness of the actuators / sensors (tp), assumed to be identical, is used as a design

variable.

ty=04  0.005 <@ <0015 (78)

4.5.2 Results and Discussions

The reference wing has root chord of 50 in., semi-span of 160 in., aspect ratio of
9.5, taper ratio of 0.35, thickness-to-chord ratio of 11 percent and mid-chord sweep of 30
degree. The wing sweep is varied during the optimization and all other parameters are
held constant. The length of the box beam and the side wall areas change as wing sweep
is varied. The width of the box beam is assumed equal to half the wing chord. A
reference configuration with conventional ply orientations of (0°/90°/+45°/-45°)g for each
wall and uniform laminate thickness of 0.02 in. (wall thickness = 0.16 in.) is used as the
initial design. The structural characteristics of the PZT actuators / sensors (G-1195) [48],
which affect mass and stiffness of the wing, as well as the induced strain are included in
the analysis. The applied voltage is such that the maximum electric field for PZT

materials (15000 volts/in.) is not exceeded.

The structural analysis of the box beam is performed with 10 elements spanwise and a

single element chordwise. The first six normal modes of vibration are used for the
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subsequent analysis. The mode shapes are normalized such that the generalized masses
are unity. The generalized aerodynamic forces (GAF) are computed at M=0.90 for 20
values of the reduced frequency between 0 and 1. The wing is divided into 48 panels.
Rational function approximation of the GAF's is performed using four denominator
coefficients (equation (49)). These coefficients are selected to be 0.2, 0.4, 0.6 and 0.8

which produce a very good fit.

Table 7. Optimization results for MDO of smart composite wing

Reference Optimum
Stacking Sequence
top /bottom walls (0°/90°/+45°/-45°)g (-1°/90°/32°/-44°)g
side walls (0°/90°/+45°/-45°) (2°/90°/44°/-36°)g
Laminate thickness (0.02/0.02/0.02/0.02)s  (0.025/0.011/0.013/0.012)s
(all walls, in.)
Wall thickness (in.) 0.160 0.122
Mid-chord sweep (deg.) 30 39
PZT actuator thickness (in.) 0.005 0.011
Applied voltage (volt) 75 165

Natural frequency

(first six modes, Hz)

1.64, 7.56, 21.84,
33.29, 46.35, 52.37

1.46,6.53, 18.43,
27.27, 38.09, 44.02

Wing structural weight (Ib) 58.62 47.28
Lift-to-drag ratio 11.24 14.71
Flutter dynamic pressure 6.9 8.0
(psi)
Tsai-Wu failure criteria 0.79 0.71
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The developed MDO procedure is computationally efficient as each run takes
approximately one minute on Sun Ultra 1 workstation for the numerical example
presented. Convergence is reached in 12 cycles during which the objective function and
the constraints are evaluated 259 times. Figure 41 shows the reference and the optimum
wing geometries. The optimization results are summarized in Table 7 and Figure 42.
The structural weight of the wing (box beam with actuator / sensor) reduces by 19 percent
(from 58.62 lb. to 47.28 lb.) and the lift-to-drag ratio increases by 31 percent (from 11.24
to 14.71). The flutter dynamic pressure for the optimized wing increases from 6.9 psi to
8.0 psi and, therefore, satisfies the design constraint. The Tsai-Wu strenght constraint is

well satisfied by both the reference and the optimized designs.

Y

A
?0 \\_. ) > X
n. i Reference wing
I e, .

— 160 in. ——|

Figure 41. Reference and optimized geometry for smart composite wing
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The reduction in the weight is achieved through lower wall thickness, which reduces
from 0.160 in. to 0.122 in. Even with lower thickness of the box beam walls, due to the
optimized ply orientations, laminate thicknesses and (increased) actuator thickness, the
flutter dynamic pressure increases to the required value in the optimum configuration.
These design variables actually contribute more to the flutter dynamic pressure than is
apparent from the final results. The higher sweep angle of the optimized wing (39 deg.)
has a detrimental effect on flutter, but it reduces the compressibility drag. Though the
higher wing sweep produces larger induced drag, the total drag reduces to enhance
aerodynamic efficiency of the wing substantially. Study of the ply orientations shows
relatively small changes in the positive angle plies (+45 deg. to +32 deg.) for the
top/bottom walls and negative angle plies (-45 deg. to -36 deg.) for the side walls. The
other ply angles remain nearly unchanged. However, the changes in the laminate
thicknesses are significant. The thickness of the zero degree laminate increases to 0.025
in., whereas that for other laminates decreases to about 0.012 in. As shown later, flutter
is caused by the first two bending modes which are stiffened due to increased thickness of
the zero degree laminates. It is to be noted that in a practical design, standard ply angles
and thickness are used. Therefore, the nearest values available must be used. Through
optimization of the ply angles and laminate (ply) thicknesses, even a lower wall thickness
(resulting in reduced weight) reduces the maximum stress in the laminates.

Study of the mode shapes (not shown) indicates similarity between reference and
optimum designs. Modes 1, 2, 3 and 5 represent bending modes and modes 4 and 6
represent pitching modes. The natural frequencies reduce from reference to optimum
design, largely due to the increased wing sweep. The eigenvalues of the characteristic
equation vary with dynamic pressure. A root locus constructed by varying the altitude for
a given Mach number yields flutter dynamic pressure when one of the real roots becomes

zero and the imaginary root is non-zero. The variations in frequency and modal damping
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with dynamic pressure provide an insight into the onset of flutter/divergence. Flutter is
often caused when the frequencies of any two modes coalesce and the damping of either
of these modes goes to zero. For divergence, the frequency also drops to zero along with
the damping. Figures 43-48 present root loci and frequency and damping histories for
reference and optimized wings. In both cases, frequencies of modes 1 and 2 coalesce and
the damping of mode 1 becomes unstable. The optimized wing has larger modal
damping leading to higher flutter dynamic pressure, although the frequency separation is

smaller between these two modes.
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Figure 43. Root locus for smart composite wing (reference design)
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5. MDO of Turbomachinery Blades

Aerodynamic and heat transfer design objectives are integrated along with various
mechanical constraints on the blade geometry for the multidisciplinary design
optimization of turbine blade profile. The K-S function method is used for multiobjective
optimization. The methods used for blade geometric modeling and aerodynamic and heat
transfer analyses are briefly described. A numerical example is presented showing the

benefits of application of the developed MDO procedure.
5.1 Blade Modeling

Bezier curves have properties that make them ideal choice to represent complex
shapes [65]. These curves can be explicitly expressed through the use of Bernstein
polynomials. The representation of airfoil geometry by Bezier-Bernstein polynomials has
been successfully used for shape optimization [61, 64]. A two-dimensional boundary is

defined by Bezier-Bernstein curve of degree n as follows.

b"(t) = i b; Bj'(t) (79)
j=o0

The vector of Bezier control points b, consisting (n+1) values of x and y coordinates of

the control points, are varied to generate different Bezier curves. The n-th degree

Bernstein polynomials are given by

n n: i n-j
B! (t):mt](l -t)" (80)

where the values of interpolation points t lie between 0 and 1.



91

This approach can accurately represent a complex shape with relatively small number

of geometric control points (Figure 49), which are used as design variables. Hence, a
reduced number of design variables may be adopted in the design optimization procedure.
The Bezier curves also possess high order of continuity and the end points pass through

the first and last control points.

Bezier polygon

0.1

Tangential distance

-0.1

'0-1 5 L I T I | I 1 I
-0.04 0 0.04 0.08 0.12
Axial distance

Figure 49. Bezier-Bernstein representation of turbine blade geometry

5.2 Analysis

5.2.1 Aerodynamic Analysis

Since the results of the optimization procedure depend on the accuracy of the analysis
techniques used, it is important to integrate reliable analyses within the optimization loop.
The complex flow environment in turbomachinery components can be best described by

three-dimensional analysis. However, the coupling of such codes within a closed loop
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optimization procedure can be computationally very expensive. In the current research,
the aerodynamic analysis is performed using the RVCQ3D (Rotor Viscous Code Quasi-3-
D) code [66-67]. It is a rapid code capable of analyzing blade-to-blade viscous flows in
turbomachines. The analysis is based on the thin shear layer approximation of the
Navier-Stokes equations. The flow equations are mapped to a body-fitted coordinate
system and a periodic C-shaped grid is used. Second-order finite differences and an
explicit multistage Runge-Kutta scheme are implemented for time marching flow
solution. For turbulent flow calculations, the Baldwin-Lomax turbulence model is
available. The method includes the quasi-three-dimensional effects of rotation, radius
change and stream surface thickness variation. The code has been validated for several

test cases and has been used for many applications [85].

Grid generation is accomplished using the GRAPE (GRids about Airfoils using
Poisson's Equation) code [68-69]. This code performs grid generation by solving Poisson
equations with arbitrarily specified inner and outer boundary points. The desired grid
spacing and intersection angles at the boundaries are obtained through proper choice of

the forcing terms in the Poisson equations.

5.2.2 Heat Transfer Analysis

The temperature distribution in the blade interior [86] is obtained by solving the
following equation of two-dimensional heat conduction.

i(ka_Tj+i[k£] o (81)

In the above equation, T is the local blade temperature and k is the thermal conductivity

of the blade material. The finite element method is used to solve the boundary value
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problem. The computational domain is discretized using linear triangular elements. The
mesh is regenerated as the blade geometry changes during optimization. The temperature
obtained from the RVCQ3D solution is used to specify the Dirichlet type nodal boundary
condition. Using the Galerkin approach, the boundary value problem is reduced to the

following system of linear equations
KT=f (82)

which is solved for the unknown nodal temperatures T. The coefficient matrix K and

the vector f are evaluated using the finite element formulation.

5.3 Optimization Problem

The developed multidisciplinary optimization procedure [87] has been applied to the
design of a subsonic turbine blade. The objectives are to minimize the total pressure loss
and maximize the kinetic energy efficiency [85] for the blade-to-blade flow by changing

the blade profile. The total pressure loss is defined as

® =1-Py, /Py, (83)

where subscripts 1 and 2 refer to conditions at inlet and exit, respectively. The kinetic

energy efficiency is defined by the following equation.
2 /52
ke = V2 / Vaideal (84)

where V, is the relative flow velocity at exit and

y—-1

) P, v
Vyideat = 2C T 1‘[{,0;) (85)
I
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Since no coolant hole or film cooling is considered in the present design,
minimization of average and maximum blade temperatures was not included as an
objective. The blade temperature was treated as a constraint. The maximum and average
blade temperatures are constrained not to exceed that of the reference blade. Blade chord,
trailing edge thickness and stagger angle are kept constant during the optimization.
Accordingly, the two control points at the trailing edge and the leading edge control point
are not varied. The tangential coordinates of the remaining ten control points are treated
as design variables, while their axial coordinates remain fixed. The area of the blade
section is constrained to lie within ten percent of the reference blade area to assure

structural integrity and to prevent large weight increase.
5.4 Results and Discussions

The reference blade (Figure 50) represents a standard section used for turbine design.
The blade has a finite trailing edge thickness and its chord length and stagger angle are
0.122 ft and 45 degrees, respectively. The annular cascade is assumed to have 36 blades
rotating at 2000 rpm. The following flow parameters are specified: Reynolds number =
6x100 per ft, inlet Mach number (absolute) = 0.21, inlet flow angle (absolute) = 0°, inlet
total temperature = 1500 K, exit static pressure ratio = 0.70, and relative flow angle at
trailing edge = -65 degrees. The external flow field around the blade is discretized using
the GRAPE code with 97 points around the blade and 31 points normal to the blade. The
flow calculations are done with RVCQ3D utilizing four stage Runge-Kutta scheme. The
blade interior is discretized with approximately 2100 elements for computing the

temperature distribution.
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Figure 50. Reference and optimum blade geometry

The optimization results are presented in Figures 50-57. The reference and optimized
blade profiles are shown in Figure 50. Significant changes to the suction and the pressure
surfaces are observed, though the airfoil area remains unchanged. The optimized blade
profile represents the most efficient aerodynamic shape at the flow conditions specified.
In a practical application of the developed MDO procedure, additional constraints may be
imposed on the blade geometry from other design considerations. The surface Mach
number and static pressure distributions are shown in Figures 51 and 52, respectively.
On the pressure side, the small adverse pressure gradient and flow deceleration in the
leading edge region are eliminated, resulting in a smoother velocity profile. The pressure
gradient on the suction side is more favorable and hence the flow accelerates to higher

Mach number near the leading edge. The pressure and the Mach number variations
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remain non-smooth at the blade trailing edge, because its geometry was held fixed during

the optimization

1.2
. Re - suction side
14 Opt-suction side n

o
o
|

Mach number
(=]
N
|

Opt - pressure side

0.2+ . -
. -7 Ref - pressure side
0 L] I ¥ I 1 l T I L I L l
0 0.02 0.04 0.06 0.08 0.1 0.12
Axial distance
Figure 51. Mach number distribution
1.1 Opt - pressure side
Ref - pressure side
£
|
O
o
B
o

Opt - suction side
1 Ref - suction side

0-5 T |
0 0.02

¥ ¥ 1 T

! |

T T T |
0.04 0.06 0.08 0.1 0.12

Axial distance



97
Figure 52. Static pressure distribution

The total pressure ratios Py, / Py, are plotted in Figure 53 for reference and optimized
blades. The total pressure loss is reduced from 2.9 percent to 1.1 percent. It should be
noted that even a small reduction in the turbine loss has a significant effect on the overall
performance of the engine. There is a substantial increase (5.5 percent) in the kinetic
energy efficiency due to optimization (Figure 54). The temperature distribution in the
blade interior are presented in Figures 55 and 56 for reference and optimized profiles,
respectively. The blade temperature constraint is satisfied as shown in Figure 57, where

the temperature of the optimized blade is normalized with respect to that of the reference

blade.
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Figure 53. Exit total pressure ratio
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6. Concluding Remarks

A new multidisciplinary design optimization procedure has been developed for the
conceptual design of composite wings with surface bonded piezoelectric actuators /
sensors. The analysis and optimization methods used are computationally efficient and
sufficiently rigorous for using the developed MDO procedure for actual design
applications. The optimization procedure for smart composite wing design involves the
coupling of structural mechanics (including smart material), aeroelasticity and
aerodynamics. The load carrying member of the wing is idealized and represented as a
composite box beam. Each wall of the box beam is analyzed as a composite laminate
using a refined higher-order displacement field to account for the variations in transverse
shear stresses through the thickness. Detailed structural modeling issues associated with
piezoelectric actuation of composite structures are included. This structural model is
suitable for analyzing both thin- or thick-walled constructions. The governing equations
of motion are solved using the finite element method to analyze practical wing

geometries.

The wing steady and unsteady aerodynamic loads are obtained using a panel code
based on the constant-pressure lifting surface method. This method utilizes the linearized
aerodynamic potential theory for compressible flows. Two methods for
flutter/divergence analysis have been implemented. The V-g method has been used to
predict accurate flutter/divergence speed. The Laplace domain method of flutter
prediction involves approximating generalized aerodynamic forces, but it produces root-
loci of the system which give an insight into the physical phenomena leading to

flutter/divergence.
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In the gradient based optimization procedure, the Kreisselmeier-Steinhauser (K-S)
function approach is used to efficiently integrate the objective functions and constraints
into a single envelope function. The resulting unconstrained optimization problem is
solved using the Broyden-Fletcher-Goldberg-Shanno algorithm.  For optimization
problems involving both continuous and discrete design variables, a procedure has been
developed using the hybrid optimization technique. Based on the several numerical

examples presented, the following important observations are made.

1. Flutter solution is obtained for an example wing using the present approach and
the classical laminate theory (CLT), which neglects transverse shear stresses. The
flutter speed using CLT is about 10 percent higher compared to that using the
present approach. This significant difference in flutter prediction between the two
theories can be a very critical issue since the flutter phenomenon is catastrophic in
nature. The difference in the flutter speed is obviosly due to the presence of
through-the-thickness transverse shear stresses which are ignored by CLT. This
example establishes the significance of the refined higher-order displacement field

on the aeroelastic stability of composite wings.

2. The effect of composite ply orientations on flutter/divergence dynamic pressure
has been studied, using the Laplace domain method. It has been shown that the
existence of various coupling modes, for different ply orientations, strongly

influence the wing aeroelastic characteristics.

3. In the numerical example for the hybrid optimization technique, wing root chord
and wall thickness are used as continuous design variables, whereas the ply
orientations are treated as discrete variables. The wing weight is used as objective

function which is minimized with constraints on flutter/divergence speed and
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stresses at the wing root due to the specified air loads. The optimized design
reduces the wing weight by 32 percent while satisfying the constraints. However,
due to the use of simulated annealing within the optimization algorithm, a large
number of function evaluations are required. This makes the procedure

computationally expensive.

The developed MDO procedure with refined analysis methods and sophisticated
(gradient bassed) optimization technique has been applied to the design of a
composite wing. The wing configuration of a high speed business jet type
airplane is selected for the optimization. The optimization converges in 10 cycles
taking only 2 hr. 50 min. on Sun Ultra 1 workstation. The optimized design has
significantly lower wing weight (eight percent) and higher flutter dynamic
pressure (23 percent). The wing strength constraint, though severely violated in

the initial design, is met by the optimized design.

The higher-order theory based composite box beam model has been extended to
include piezoelectric actuators / sensors bonded to top and bottom surfaces. The
optimization problem is formulated with the objective of simultaneously
minimizing wing weight and maximizing its aerodynamic efficiency. Design
variables include composite ply orientations, ply thicknesses, wing sweep, and
piezoelectric actuator thickness. Constraints are placed on the flutter/divergence
dynamic pressure and wing root stresses. The maximum electric field applied to
the actuators is restricted by the coercive field of the PZT material. The
developed MDO procedure is computationally efficient as each run takes
approximately one minute on Sun Ultra 1 workstation for the numerical example
presented. Convergence is reached in 12 cycles during which the objective

function and the constraints were evaluated 259 times. The optimal design shows
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physically meaningful results. The weight of the wing is reduced by 19 percent
and the lift-to-drag ratio increases by 31 percent. The flutter dynamic pressure for
the optimized wing increases from 6.9 psi to 8.0 psi and the Tsai-Wu strenght
constraint is well satisfied. The wing sweep is increased to 39 degree for reduced
compressibility drag (hence increased aerodynamic efficiency). The thickness of
zero degree plies is substantially increased which enhances the damping of
bending modes leading to higher flutter dynamic pressure. The larger thickness of

the PZT actuators also helps increase flutter dynamic pressure.

The development of a new multidisciplinary optimization procedure for the design of
turbine blades is presented. The procedure integrates aerodynamic and heat transfer
design objectives along with mechanical constraints on blade geometry. Bezier-Bernstein
representation of the blade profile leads to a relatively small set of design variables.
Viscous blade-to-blade flow is calculated through thin shear layer approximation of the
Navier-Stokes equation. A Poisson's equation based grid generator provides the grid for
the flow solution. The maximum and average blade temperatures are obtained through a
finite element analysis. Total pressure loss is minimized and the exit kinetic energy
efficiency is maximized with constraints on blade temperatures and geometry. The K-S
function approach is used to solve the multiobjective constrained nonlinear optimization
problem. The results for the numerical example show significant improvements after
optimization. The total pressure loss is reduced by 1.8 percent and there is 5.5 percent
increase of the kinetic energy efficiency. The maximum and average blade temperatures
for the optimum blade are lower than the reference case. Other design constraints such as

airfoil area, chord, trailing edge thickness and stagger angle are satisfied.
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